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Abstract: Within the type II see-saw mechanism the light neutrino mass matrix is given

by a sum of a direct (or triplet) mass term and the conventional (type I) see-saw term.

Both versions of the see-saw mechanism explain naturally small neutrino masses, but the

type II scenario offers interesting additional possibilities to explain large or almost max-

imal or vanishing mixings which are discussed in this paper. We first introduce “type II

enhancement” of neutrino mixing, where moderate cancellations between the two terms

can lead to large neutrino mixing even if all individual mass matrices and terms generate

small mixing. However, nearly maximal or vanishing mixings are not naturally explained

in this way, unless there is a certain initial structure (symmetry) which enforces certain

elements of the matrices to be identical or related in a special way. We therefore assume

that the leading structure of the neutrino mass matrix is the triplet term and corresponds

to zero Ue3 and maximal θ23. Small but necessary corrections are generated by the conven-

tional see-saw term. Then we assume that one of the two terms corresponds to an extreme

mixing scenario, such as bimaximal or tri-bimaximal mixing. Deviations from this scheme

are introduced by the second term. One can mimic Quark-Lepton Complementarity in this

way. Finally, we note that the neutrino mass matrix for tri-bimaximal mixing can be —

depending on the mass hierarchy — written as a sum of two terms with simple structure.

Their origin could be the two terms of type II see-saw.
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1. Introduction

The smallness of neutrino masses arises naturally in the conventional or type I see-saw

mechanism [1], with a low energy neutrino mass matrix of the form

mI
ν = −mT

D M−1
R mD . (1.1)

Here mD is a Dirac mass matrix usually related to the known fermion masses or the

weak scale v ≃ 174 GeV, and MR is a Majorana mass matrix of Standard Model singlet

neutrinos with a mass scale M as large as the GUT scale. Hence, neutrino masses are

naturally of order v2/M ∼ 0.01 eV, corresponding nicely to the square root of the mass

squared difference of atmospheric neutrinos. However, the other equally astonishing aspect

of neutrino physics, namely the presence of large mixing angles, is a priori not explained by

the type I see-saw mechanism. It is possible to generate large mixings by specific forms of

the low energy mass matrix, and many models have been proposed [2] in order to explain

the form of mν from the structure of mD or of MR, or of both of them.

In this article we want to discuss large mixings in the context of the type II see-saw

mechanism [3], where the light neutrino mass matrix can be written as the conventional

type I see-saw term plus an additional (triplet) contribution:

mν = mII
ν + mI

ν = mL − mT
D M−1

R mD . (1.2)
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Since mν is now a sum of two terms, there are interesting non-trivial possibilities, not

present in the conventional see-saw mechanism, which can naturally be related to large

or nearly maximal mixings. The first suggestive option is, that for some reason, both

terms could be of comparable magnitude and (moderate) cancellation is connected to the

interesting features of neutrino mixing. Alternatively, it could be the sum of the two

comparable terms which is crucial. Most naturally, one term dominates, while the other

term introduces only a small correction. The interplay of both terms has so far been

analyzed only in a few papers, for instance within specific SO(10) models [4], regarding

the reconstruction of the mass matrices [5, 6], or in other scenarios [7 – 10]. Specifically, we

focus our discussion in this paper in the context of the type II see-saw on four aspects of

large neutrino mixing:

(i) we point out in section 3 that even if all involved matrices, and even both terms in

eq. (1.2), generate small mixing, a moderate cancellation can generate large mixings

in mν (“type II enhancement”). This happens if the involved matrices have similar or

even identical flavor structure, which distinguishes the scenario from the usual (type I)

see-saw enhancement of neutrino mixing. This mechanism produces typically sizable

or large mixings, but maximal or exactly vanishing mixings are not expected (as

in basically all models for lepton mixing) unless in addition certain elements of the

matrices are related;

(ii) in order to explain naturally almost maximal or almost vanishing mixings, we propose

in section 4 that one of the two terms in mL − mT
D M−1

R mD is dominant and that

it corresponds to Ue3 = 0 and to maximal θ23. The second term would then be

responsible for small or tiny corrections;

(iii) in section 5 we assume that the triplet term in the type II see-saw formula corresponds

to a specific mixing scheme, e.g., bimaximal or tri-bimaximal mixing. A subleading

conventional term then introduces a perturbation to this mixing scheme, thereby

explaining deviations from bimaximal or tri-bimaximal mixing. It is also possible to

mimic Quark-Lepton Complementarity in this way;

(iv) in section 6 we finally take advantage of the fact that the neutrino mass matrix for

tri-bimaximal mixing can almost always be written as a sum of two terms with simple

structure. Their origin could be the two terms of type II see-saw.

To the best of our knowledge, the main points we make here have not been emphasized

in the literature before. We will not construct explicit models for the issues given here, or

conduct detailed numerical or analytical studies, but rather limit ourself to give instructive

examples for each of these cases. We hope this will point the way to interesting model

building possibilities and bring some attention to the various unexplored features of the

type II see-saw. Before discussing the issues mentioned above, we will start by shortly

summarizing the framework of the present study in the next section.
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2. Framework

2.1 Neutrino mixing and the mass matrix

Let us shortly summarize the neutrino observables and our current knowledge about them.

With the usual parametrization of the lepton mixing matrix (we neglect the phases in this

work),

U =









c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13









, (2.1)

where cij = cos θij, sij = sin θij, we have as best-fit points [11] Ue3 = 0, θ23 = π/4 and

sin2 θ12 ≃ 0.3. The zeroth order form of the mass matrix mν = U∗ mdiag
ν U † can then be

given as

mν =

√

∆m2
A

4









0 0 0

· 1 1

· · 1









or mν =

√

∆m2
A

2









0 1 1

· 0 0

· · 0









, (2.2)

when neutrinos obey a normal (m2
3 ≫ m2

2,1) or inverted (m2
2 ≃ m2

1 ≫ m2
3 with m1 and

m2 having opposite CP parities) hierarchy, respectively. Order one coefficients are not

explicitly given here. The matrices in eq. (2.2) can for instance be obtained by asking for the

conservation of the flavor charge Le [12] or Le −Lµ −Lτ [13], respectively. Approximately,

the dominating 23 block of the mass matrix can also be generated by sequential dominance

of the right-handed neutrinos in type I see-saw scenarios [14]. If neutrinos are quasi-

degenerate, m3 ≃ m2 ≃ m1 ≡ m0, there are also ways to explain this by simple symmetries.

For instance, models based on SO(3) usually lead to a mass matrix proportional to the

unit matrix [15], i.e., the three neutrinos all have the same CP parities. This is a rather

unstable situation in what regards radiative corrections. Another possibility, along the

lines of Le and Le − Lµ − Lτ , is

mν = m0









1 0 0

· 0 1

· · 0









, (2.3)

which corresponds to the conservation of Lµ − Lτ [16, 17]. Apparently, some or all of the

zero elements of these simple matrices in eqs. (2.2), (2.3) have to be filled with small entries.

Alternatively, the flavor symmetries Le, Le −Lµ −Lτ or Lµ −Lτ have to be broken softly.

One of the points we wish to make in this paper is that the type II see-saw mechanism with

its two terms generating mν is a natural candidate to introduce the breaking parameters.

2.2 Origin of type II see-saw

The low energy neutrino mass matrix resulting from the type II see-saw is mν = mII
ν +mI

ν =

mL − mT
D M−1

R mD. The relevant Lagrangian is

L =
1

2
NRi (MR)ij N c

Rj +
1

2
Lc

α fαβ iτ2 ∆L Lβ +
1

v
NRi (mD)iα Lα Φ† , (2.4)
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where NRi are the right-handed Majorana neutrinos and Lα = (να, α)TL is the lepton

doublet with α = e, µ, τ . There is also a Dirac mass matrix mD governing the coupling of

the Higgs doublet Φ with the NRi. The matrix mII
ν stems from the second term in eq. (2.4)

and requires a SU(2)L triplet, which can be written as

∆L =





1√
2

∆+ ∆++

∆0 − 1√
2

∆+



 . (2.5)

The neutral component develops a vacuum expectation value vL, which together with the

symmetric Yukawa coupling matrix fαβ gives a contribution mII
ν = vL f to the low energy

neutrino mass matrix. The value of the ρ parameter and in particular the small neutrino

masses imply that vL ≪ v. A popular scenario in which the type II see-saw can be realized

is based on the left-right (LR) symmetric gauge group SU(2)L×SU(2)R×U(1)B−L. The LR

gauge group is a subgroup of the Pati-Salam group and it can also be obtained from SO(10).

Gauge symmetry implies the existence of V −A and V + A interactions. Moreover, gauge

symmetry demands the presence of a SU(2)R Higgs triplet ∆R. By developing a vacuum

expectation value vR, SU(2)L ×SU(2)R ×U(1)B−L is broken down to the Standard Model.

The mass matrix of the right-handed neutrinos MR = vR g is also generated, where g is

a symmetric Yukawa coupling matrix.1 An even more appealing and interesting scenario

occurs when in addition to the LR gauge symmetry there is a discrete LR symmetry, in

which case mL and MR have identical flavor structure and are proportional to each other:

mL ≡ vL f =
vL

vR
MR with vL vR = γ v2 , (2.6)

where γ is a model-dependent function of the underlying theory. The discrete LR symmetry

of the form f = g implies in addition that mD is symmetric. The Yukawa matrix f defines

the flavor structures of both mL and MR. Using vL vR = γ v2 we have

mν = vL

(

f − mT
D

f−1

γ v2
mD

)

. (2.7)

It is apparent that the relative magnitude of the two terms in mν depends on γ. In order

to have both terms in the type II see-saw formula to be of similar magnitude, and with

assuming that at least one entry of mD is of order v, the value γ = O(1) suggests itself.2

Moreover, if one entry of mD is of order v, dominance of the conventional see-saw term

corresponds to γ ≪ 1, whereas dominance of the triplet term corresponds to γ ≫ 1. In

the limit of vR → ∞ the parameter vL and therefore the neutrino mass goes to zero. In

addition, the theory becomes purely V − A. Hence, such theories relate the smallness

of neutrino masses with the maximal parity violation of the weak interactions, a feature

which makes them from an esthetical point of view very attractive. Actually, to have this

connection a LR gauge symmetry suffices and no need for a discrete symmetry is present. In

1The Higgs doublet now becomes a bi-doublet, which however does not affect our discussion.
2Actually, the situation is slightly more complicated [6], but this simplified discussion suffices to empha-

size the main points.
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fact, for most of the issues to be discussed in the following, neither a LR gauge nor discrete

symmetry are necessary. From the model building point of view it is however interesting to

see where one could afford such a symmetric and esthetical framework. Moreover, gauge

and discrete LR symmetry reduce the number of free parameters and simplify the analysis.

Some cases to be presented will however not be possible when a discrete left-right symmetry

is present.

The possibility that a term is added to the conventional see-saw term mT
D M−1

R mD is of

course not exclusively reserved for a Higgs triplet. There can be B−L breaking dimension

five operators from various sources [18], including Planck scale effects, SUSY contributions,

radiative models, etc. All of these possibilities have their theoretical justification, and in

principle our considerations can apply to these contributions, too.

3. From small to large mixing via type II see-saw

In this section we remark that in the type II see-saw mechanism moderate cancellation

can lead to the generation of large neutrino mixing. This mechanism, which we call

“type II enhancement” of neutrino mixing, can work successfully even if mD, mL, MR

and mT
D M−1

R mD correspond to small mixing. In fact, we will assume here that all in-

dividual matrices possess a “hierarchical masses with small mixing” form. This has its

motivation in the large hierarchy of the charged lepton and quark masses, as well as the

small quark mixing.

Let us first recall the generation of large mixing from small mixing in case of the

conventional see-saw mechanism.

3.1 The situation in the type I see-saw

Before experimental results made a paradigm change necessary, one expected that there is

some form of quark-lepton symmetry which then implies that lepton mixing — in analogy

to quark mixing – is described by small mixing angles. However, after the discovery of large

lepton mixing it turned out that in principle one can generate large mixing in mI
ν from

small mixing in mD and MR by appropriate choice of the hierarchies in, and parameters

of, the matrices mD and MR [19]. For instance, in a simple 2-flavor framework the mass

matrices could be

mD = v

(

ǫD a ǫD

b ǫD 1

)

and MR = M

(

ǫM 0

· 1

)

, (3.1)

with ǫD,M ≪ 1 and a, b = O(1). The individual mixing angles of these two matrices are

small or even zero. The relevant parameter for the relative hierarchy between mD and MR

is η ≡ ǫ2
D/ǫM . In case of η ≫ 1, or ǫ2

D ≫ ǫM , the mixing angle for mν = −mT
D M−1

R mD is

large:

mν = − v2

M

(

η + b2 ǫ2
D a η + b ǫD

· 1 + a2 η

)

η≫1
=⇒ tan 2θ ≃ 2

a − 1/a
= O(1) . (3.2)
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Note that the individual mixings of mD and MR are small – in analogy to the quark sector

— but the mixing of mν is large. This “see-saw enhancement” can be traced to ǫ2
D ≫ ǫM ,

i.e., a stronger hierarchy in the Majorana sector [19]. Naively, one might say that the

hierarchy of mD is squared in the type I see-saw formula, so that the hierarchy in MR has

to be strong to cancel it. Note that we have assumed (close to) symmetric mD, as implied

for instance by a discrete LR symmetry. If the symmetry basis is not the basis in which the

charged lepton mass matrix mℓ is real and diagonal, then mD will be slightly non-symmetric

if the matrix diagonalizing mℓ contains only small mixing angles. Our arguments would

remain valid in this case. We should remark here that for highly non-symmetric Dirac

mass matrices it is possible to generate successful large neutrino mixing even if MR and

mD have very similar hierarchy [20]. To generate maximal mixing from eq. (3.2) one would

require a = 1, which means that two entries in mD are identical. The equality of certain

elements is always necessary for extreme mixing angles. We can generalize the procedure

to three generations. Suppose that mD is “up-quark-like”, i.e., it contains masses (in units

of v) of order 1, ǫ2
D and ǫ4

D:

mD = v









ǫ4
D a ǫ3

D b ǫ3
D

a ǫ3
D c ǫ2

D d ǫ2
D

b ǫ3
D d ǫ2

D 1









and MR = M









ǫM1 0 0

· ǫM2 0

· · 1









, (3.3)

where the diagonal MR is described by two small parameters ǫM1 and ǫM2. The light
neutrino mass matrix is

mν = − v2

M









ǫ2D
(

b2 ǫ4D + η1 + a2 η2

)

ǫD

(

b d ǫ4D + a η1 + a c η2

)

ǫD

(

b ǫ2D + b η1 + a d η2

)

· d2 ǫ4D + a2 η1 + c2 η2 d ǫ2D + a b η1 + d c η2

· · 1 + b2 η1 + d2 η2









, (3.4)

where we defined η1 = ǫ6
D/ǫM1 and η2 = ǫ4

D/ǫM2. To have a dominating 23 block in this

matrix, we can either have η2 ≫ η1, ǫ
2
D or η1 ≫ η2, ǫ

2
D. In the first case we have

mν = − v2

M









a2 ǫ2
D η2 a c ǫD η2 a d ǫD η2

· c2 η2 d c η2

· · 1 + d2 η2









, (3.5)

which for η2 of order (or larger than one) is the wanted leading order structure of mν . Note

that maximal 23 mixing in case of η2 larger than one would require d = c, i.e., equality of

certain mass matrix elements. Realistic predictions require corrections to this matrix from

the remaining Majorana masses via η1 [14]. We stress again that this see-saw enhancement

of the mixing requires that the hierarchy in MR is stronger, or the mixing is smaller, than

that in the (close to symmetric) mD. Consequently, if MR and mD have a similar flavor

structure, and hence similar small mixing angles, then such a procedure is doomed. As we

will argue in the following, in the type II see-saw case there is no problem in this case.
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3.2 The situation in the type II see-saw

We will show now that the peculiar interplay of the two terms in the type II see-saw formula

can give large mixing even if MR and mD have small mixing of the same order of magnitude

(“type II enhancement”). The need to construct models in which the flavor structure of the

right-handed neutrinos is very much different from the one of the other fermions is therefore

absent. What we essentially note is that if both mII
ν and mI

ν generate small mixing (as

in the quark sector), their sum does not necessarily need to do so and can correspond to

large neutrino mixing. The conditions under which this can occur are outlined below, but

the essential requirement in our example is only a moderate cancellation in the 33 entry of

mν .

Let us demonstrate the idea in a simple 2-neutrino framework: consider a hierarchical

Dirac mass matrix of the form

mD = v

(

aD λ4 bD λ

bD λ 1

)

. (3.6)

For simplicity, we have chosen here mD to be symmetric, an assumption which by no

means affects the validity of our argument. Since the mechanism is working for similar

flavor structures of the involved matrices, we do not introduce small ǫD for mD and ǫM

for MR, but rather parametrize the matrices in terms of a single small parameter λ, which

can be thought of to be of the order of the Cabibbo angle. We choose a Majorana mass

term for the right-handed neutrinos with similar hierarchy:3

MR = vR

(

aR λ3 bR λ

· 1

)

. (3.7)

We introduced real parameters ac and bc (with c = D,R for the Dirac and Majorana mass

matrix, respectively), which are of order one. Within the conventional see-saw mechanism,

we have (giving only the lowest powers of λ)

mI
ν = −mT

D M−1
R mD ≃ v2

vR

bD(bD − 2bR)

b2
R





aR bD
bD − 2bR

λ3 −bD bR
bD − 2bR

λ

· 1



 , (3.8)

which generates small mixing, θI = O(λ). The mixing angles for mD and MR, respectively,

are also of the same order: θD ≃ θR = O(λ). Let us assume a discrete LR symmetry. Then,

with mII ∝ MR we also have that the mixing of the triplet term is small: θII = O(λ).

Now we add mI
ν to mII

ν , which yields

mν = mII
ν + mI

ν ≃ vL











(

aR +
aR b2

D

b2
R γ

)

λ3

(

bR − b2
D

bR γ

)

λ

· 1 +
bD (bD − 2bR)

b2
R γ

+
aR (bD − bR)2

b4
R γ

λ











.

(3.9)

3If mD and MR had identical flavor structure, our argument would still work but the resulting formulae

would become longer. We comment below on an interesting aspect of these scenarios.
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In general, this matrix generates two eigenvalues of order 1 and λ2 and a small mixing

angle of order λ. The crucial observation for type II enhancement is the following: suppose

the term of order 1 in the 22 element of mν in eq. (3.9) cancels. In this case one has large

mixing given by

tan 2θ ≃ 4 bD b3
R

aR (bR − bD)
= O(1) . (3.10)

If in addition bD = bR holds we can even generate maximal mixing. Note that this formula

holds when the order one term in eq. (3.9) cancels exactly. In order to generate large

mixing (i.e., tan 2θ of order 1) it suffices however that the cancellation of the two terms

generates a term of order λ. If the 11 entry is very small, it is crucial that cancellations

make the 22 entry of mII
ν +mI

ν have the same order as the 12 entry. In order not to ask for

too strong cancellation (and therefore fine-tuning) there should before cancellation be only

one order of magnitude difference between the 12 and 22 entry. We have assumed discrete

LR symmetry, forcing mL and MR to be proportional to each other. This is obviously not

necessary to make the mechanism work.

In the realistic case of three generations we wish to obtain now the leading structure of

the low energy mass matrix corresponding to a normal hierarchy. It is therefore necessary

that, after the cancellation, the lower 23 block of mν has elements of the same order of

magnitude, but larger than the entries in the first row. One may choose the following

structures of the mass matrices:

mD = v









aD λ4 bD λ3 cD λ3

· dD λ2 eD λ2

· · fD









and MR = vR









aR λ3 bR λ2 cR λ2

· dR λ eR λ

· · fR









. (3.11)

We also choose discrete LR symmetry which means here mL = vL MR/vR. The mass

spectrum of mD is “up-quark-like”, i.e., it contains masses (in units of v) of order 1, λ2

and λ4, while the eigenvalues of MR (mL) are in units of vR (vL) of order 1, λ and λ3. The

two mass spectra of mD and MR are therefore similar, and small mixing is predicted by

both matrices. The structure of the mass matrix in the conventional see-saw mechanism is

mI
ν ≃ v2

vR











O(λ5) O(λ4) O(λ3)

· O(λ3) O(λ2)

· · f2

D

fR
+ O(λ)











, (3.12)

which can not reproduce the neutrino data. Hence, if only the conventional type I see-saw

term or only the triplet term mL would contribute, then small neutrino mixing not capable

– 8 –
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of explaining the data would result. However, the total neutrino mass matrix reads

mν = mII
ν + mI

ν ≃ vL











aR λ3 bR λ2 cR λ2

· dR λ eR λ

· · (fR − f2

D

fR γ
) + f̃ λ











,

with f̃ =

(

c2
R dR − 2 bR cR eR + aR e2

R

)

f2
D

(

b2
R − aR dR

)

f2
R γ

.

(3.13)

Let us again assume that the order one term in the 33 entry of eq. (3.13) cancels completely

(again, it suffices that cancellation occurs just down to order λ). The condition for exact

cancellation is quite simple, namely f2
R = f2

D/γ, which is in fact simpler than the corre-

sponding condition from the 2-flavor case discussed above. Then the mass matrix takes a

well-known texture

mν ≃ vL λ









aR λ2 bR λ cR λ

· dR eR

· · f̃









, (3.14)

where the leading 23 block with entries of equal magnitude is necessary for large atmo-

spheric mixing. The phenomenological consequences of eq. (3.14) are a normal mass hi-

erarchy with m2
3 ≫ m2

2,1. Thereby renormalization effects are rendered subleading [21],

unless in the MSSM with very large tan β (see below). Moreover,

|Ue3| ∼ λ ∼
√

∆m2
⊙

∆m2
A

, (3.15)

where ∆m2
⊙ ≃ 8 · 10−5 eV2 (∆m2

A ≃ 2 · 10−3 eV2) governs the oscillations of solar and

long base-line reactor (atmospheric and long-baseline accelerator) neutrinos. This fixes the

magnitude of λ ≃ 0.2 and of vL ≃
√

∆m2
A/λ ≃ 0.2 eV. Neutrinoless double beta decay

is suppressed and triggered by a small effective mass of order |mee| ∼
√

∆m2
A |Ue3| ∼

√

∆m2
⊙. The sizable |Ue3| of order λ, a value close to current limits, is easily measurable

in upcoming long-baseline or reactor oscillation experiments [22]. Moreover, atmospheric

neutrino mixing deviates sizably from maximal, tan 2θ23 ≃ 2 eR/(f̃ − dR). This will be

testable with future precision data, too. Without additional symmetries forcing some

elements of mν to be equal, neither zero |Ue3| nor maximal θ23 can be achieved in this

framework. To be precise, in eq. (3.14) one would need bR = cR and dR = f̃ . Other

aspects of type II see-saw, to be discussed in the next sections, could be used to achieve

extreme values of mixing angles.

As is well known [12], the sub-determinant of the lower right 23 block has to be of order

λ to generate a large solar neutrino mixing angle θ12. Therefore, two mild cancellations to

order λ are required: (i) the leading term in the 33 entry of mν has to cancel to order λ;

(ii) the lower right 23 sub-determinant of mν has to be of order λ to generate large solar
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neutrino mixing. The fact that two cancellations are required to make θ12 large, but only

one to make θ23 large, could be used as an explanation why atmospheric neutrino mixing

is larger than solar.

One may wonder whether one can generate the inverted hierarchy along similar lines.

Here the requirement is that the 12 and 13 entries of mν are much larger than the other

ones. When all individual matrices mL, MR and mD correspond to small mixing, this would

be rather unnatural since it requires cancellation within several independent elements of

the resulting mν . Similar statements can be made for quasi-degenerate neutrinos. Note

that we have chosen mL in a way that before cancellation there is only one order of

magnitude difference between the 33 and the 22,23 elements of mν . This guarantees that

cancellation is necessary only for one entry. A more extreme example for cancellation in

several elements can be found in ref. [8]: a discrete LR symmetric type II see-saw model

based on S(3)L × S(3)R was considered, which allows two terms for each Majorana mass

matrix, one term proportional to the unit matrix and one proportional to the democratic

matrix. The latter term appears in mI
ν and mII

ν and has to cancel in order to generate

large neutrino mixing.

The condition for the 33 entry in mν of eq. (3.13) to cancel down to order λ can be

written as fR − f2

D

fR γ

!
= aλ. One may wonder whether radiative corrections can lead to

this condition. For the normal hierarchy and within the Standard Model the radiative

effects are always negligible below the see-saw scale. This can change in case of the MSSM,

however. The effect of radiative corrections below the see-saw scale is to multiply the 13

and 23 element with (1 + ǫ) and the 33 element with (1 + ǫ)2, where

ǫ ≃ −(1 + tan2 β)
m2

τ

16π2 v2
ln

MX

MZ
≃ −2 · 10−5 (1 + tan2 β) ,

with mτ the tau lepton mass. Large values of tan β >∼ 50 could lead to a sizable correction

(1+ǫ) ∼ λ, but would cause this on all elements of the third column of mν , in particular on

the 23 entry. Hence, we cannot blame radiative effects for the generation of large mixing

in the framework under study.

Our examples had slightly different textures for mD and MR ∝ mL. However, one could

imagine cases in which all matrices have identical powers of λ in all entries. This implies

an interesting aspect for the complete 6 × 6 neutrino mass matrix whose diagonalization

will lead to eq. (1.2):

Mν =





mL mD

mT
D MR



 . (3.16)

It is easy to show that if the structures of mL ∝ MR and mD are identical, i.e. aD = aR,

bD = bR and so on, then the determinant of Mν vanishes for γ = 1. The requirement for

this is therefore that all matrices mL, MR and mD are identical and only differ by their

scales vL, vR and v. In addition, the exact relation vL vR = v2 must hold.

4. Leading structures for zero Ue3 and maximal θ23

As mentioned above, with the type II see-saw enhancement discussed in the last section, it
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is in general not possible to generate exactly maximal or zero mixing. Therefore, we will
now assume that the leading structure of the neutrino mass matrix corresponds to zero Ue3

and maximal θ23 and is provided by one of the terms in the type II see-saw formula. Small
corrections are supplied by the other term, which can be either subleading or of similar
magnitude (a study with no corrections from the conventional see-saw term is given in [24]).
Let us recapitulate (see also [23] for the first two examples) the three simple, stable and
often used candidates for zero Ue3 and maximal θ23:

(A) :

√

∆m2
A

4









0 0 0

· 1 −1

· · 1









, (B) :

√

∆m2
A

2









0 1 1

· 0 0

· · 0









, (C) : m0









1 0 0

· 0 1

· · 0









. (4.1)

They conserve the flavor charges Le, Le − Lµ − Lτ and Lµ − Lτ , respectively. All three

matrices have one eigenvalue with an eigenvector (0, −1/
√

2, 1/
√

2)T . This eigenvalue is
√

∆m2
A for case (A), 0 for case (B) and −m0 for case (C). Therefore, they correspond to

the normal hierarchy, the inverted hierarchy and quasi-degenerate neutrinos, respectively.

Applying corrections to the three candidates is essential, since in their present form (A)

and (B) have no solar ∆m2 while case (C) has no atmospheric ∆m2. Case (B) predicts

maximal θ12, the other candidates have no physical 12 mixing. The matrices in eq. (4.1)

are exact, i.e., there are no order one coefficients involved. This is essential to have an

eigenvalue of the form (0, −1/
√

2, 1/
√

2)T except for matrix (C). This is because Lµ −Lτ

is the only allowed U(1) which is automatically µ–τ symmetric [25].

One appealing possibility is that these simple matrices correspond to the triplet term

mL and a small perturbation stems from the conventional see-saw term.4 We thus assume

that some symmetry enforces the triplet term to have one of the simple forms given in

eq. (4.1). The leading structures (A), (B) and (C) could also stem from the conventional

see-saw term and the necessary correction from the triplet term. To generate such simple

structures in mI
ν , interplay of the parameters in mD and MR is required. In a given theory

or model this can be natural, but a priori it is more appealing that mL directly has this

simple form.

As already mentioned, we need to fill the zero entries in these matrices via the conven-

tional see-saw term. In what regards the possibility of a discrete LR symmetry, it should

be noted that cases (A) and (B) are singular and can not be inverted. Thus, if these ma-

trices correspond to mL, and if MR ∝ mL, we can not construct the inverse of MR and the

see-saw formula does not apply. Sterile neutrinos are the consequence of such a situation,

for recent analyzes see [26]. One will have to omit the simplifying assumption MR ∝ mL

in order to allow for a correction to the leading structure in mL. On the other hand, the

matrix (C) is invertible and can correspond to the triplet term in a discrete LR symmetric

theory. Anyway, for simplicity and illustration we will focus here on three rather simple

perturbations to the candidate matrices. What we mean by this is that mI
ν has entries of

4A similar strategy to the one presented here has been discussed in the context of quasi-degenerate

neutrinos previously in ref. [10]. It was assumed that mL is proportional to the unit matrix (made possible

by a SO(3) symmetry) and the conventional see-saw term corresponds to sequential dominance [14], thereby

generating quasi-degenerate neutrinos with large mixing.
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the same order of magnitude, at most differing from each other by order one coefficients.

The first possible perturbation is purely anarchical [27]:

mI
ν ≃ vL ǫ









a b c

· d e

· · f









. (4.2)

Such a matrix can be obtained if both mD and MR are anarchical, or if only one of them

is anarchical and the other one proportional to the unit matrix. The second perturbation

corresponds to a µ–τ symmetric [25] matrix, i.e., b = c and d = f :

mI
ν ≃ vL ǫ









a b b

· d e

· · d









. (4.3)

As the candidate matrices in eq. (4.1) are also µ–τ symmetric, adding this perturbation

will not change the values Ue3 = 0 and θ23 = π/4. Such a µ–τ symmetric correction can

be achieved when mD and MR have a 23 exchange symmetry [28]. The third case occurs

when all entries in mI
ν are identical, i.e., mI

ν is flavor democratic [29]:

mI
ν ≃ vL ǫ









1 1 1

· 1 1

· · 1









. (4.4)

Symmetries such as S(3) can lead to such a structure.

We start with the leading structure (A), corresponding to a normal hierarchy. If it

would correspond to the triplet term mL, one would have vL ≃
√

∆m2
A/2. The pertur-

bation has to generate the solar mass squared difference, therefore ǫ ≃
√

∆m2
⊙/∆m2

A.

For an anarchical perturbation as in eq. (4.2), one finds naturally large θ12, while Ue3 ≃
ǫ (b− c)/

√
8, θ23 −π/4 ≃ ǫ (d− f)/4 and ∆m2

⊙/∆m2
A ∝ ǫ2. Hence, both Ue3 and θ23 −π/4

are of order
√

∆m2
⊙/∆m2

A. If f = d one keeps θ23 maximal while Ue3 6= 0, and for b = c

it holds that Ue3 is zero while θ23 6= π/4 [30]. Such a simple possibility does not exist

for the other candidates (B) and (C). Both observables remain exactly zero if the type

I correction is µ–τ symmetric as in eq. (4.3). Solar neutrino mixing is then naturally of

order one: sin2 θ12 ≃ (a − d − e + w)/(2w), where w =
√

8 b2 + (a − d − e)2. Now con-

sider the flavor democratic perturbation from eq. (4.4). One eigenvalues is zero, and one

is 3 ǫ vL with an eigenvector (1/
√

3, 1/
√

3, 1/
√

3)T and therefore sin2 θ12 = 1
3
. This is of

course tri-bimaximal mixing [31]. We will elaborate more on this interesting possibility in

section 6.

Let us turn to the inverted hierarchy. If matrix (B) corresponds to mL, then vL ≃
√

∆m2
A/

√
2. The correction to the zeroth order matrix (B) — in absence of charged

lepton contributions to the mixing matrix — has to be sizable and tuned. It is however
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possible that an anarchical perturbation from mI
ν , being suppressed with respect to mL

by a small factor of ǫ ∼
√

∆m2
⊙/∆m2

A, corrects case (B) in an appropriate way, leading

to Ue3 and θ23 − π/4 of order
√

∆m2
⊙/∆m2

A. For a µ–τ symmetric small correction one

has that the smallest mass is (d − e) ǫ and of course Ue3 = θ23 − π/4 = 0. The ratio of

mass squared differences is ∆m2
⊙/∆m2

A ≃
√

2 (a + d + e)ǫ and solar neutrino mixing is

governed by sin θ12 ≃
√

1
2
− (a − d − e) ǫ/8. If the order one coefficients conspire such

that (a + d + e) ≪ (a − d − e), then small ∆m2
⊙ goes along with non-maximal θ12. This

in turn means that a flavor democratic perturbation does not work, since in this case

∆m2
⊙/∆m2

A ≃ 3
√

2 ǫ and |Ue2| ≃
√

1
2
− ǫ/8. Hence, sin θ12 ≃

√

1
2
(1 − 1

24
∆m2

⊙/∆m2
A),

which is too small a value.

Apart from anarchical corrections, note that one needs a type I contribution of the

form

mI
ν = −mT

D M−1
R mD ≃ vL









O(λ) or O(1) O(λn1) O(λn2)

· O(λn3) O(λn4)

· · O(λn5)









, (4.5)

where ni is some integer number. This implies non-trivial structures of mD and/or MR.

For instance, if (other choices are of course possible)

mD = v









aD λ4 bD λ5 cD λ5

· dD λ2 eD λ2

· · fD λ









and MR = vR









aR λ7 0 0

· dR λ2 0

· · fR









, (4.6)

we would get

mI
ν = −mT

D M−1
R mD ≃ v2

vR









O(λ) O(λ2) O(λ2)

· O(λ2) O(λ3)

· · O(λ2)









, (4.7)

which can satisfy the data if added to mL.

Now, turning to quasi-degenerate neutrinos, assume that matrix (C) corresponds to

mL. An anarchical perturbation allows for successful phenomenology. Diagonalizing matrix

(C) plus a flavor democratic perturbation, gives eigenvalues −1, 1 and 1 + 3ǫ, where the

latter has an eigenvector (1/
√

3, 1/
√

3, 1/
√

3)T , thereby resembling tri-bimaximal mixing.

Recall that to accommodate the data, it is necessary that the neutrino with mass m2

has this eigenvector. Thus, additional breaking is required (for instance via radiative

corrections), in addition also because only one non-zero ∆m2 is present.

Another possibility is the following: since the matrix (C) is invertible, we can assume

discrete LR symmetry and thus mL ∝ MR. Choosing for instance

mD = v









aD λ3 bD λ2 cD λ2

· dD λ eD λ

· · fD









and MR = vR









X 0 0

· 0 Y

· · 0









, (4.8)
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gives a low energy mass matrix capable of explaining the data [16, 17]:

mII
ν + mI

ν ≃ vL









X O(λ3) O(λ2)

· O(λ2) Y

· · O(λ)









, (4.9)

where only the leading terms are given. The Dirac mass matrix resembles the up-quarks

and the form of MR is trivial to obtain if the heavy neutrinos N1, N2 and N3 have the

charges 0, 1 and −1 under Lµ − Lτ [16].

We were using in this section, in particular for the normal hierarchy, mainly a more

or less anarchical perturbation generated by the type I see-saw term, which is somewhat

incompatible with the naive expectation of hierarchical Dirac mass matrices and also with

a discrete LR symmetry. In the next section we will show that it is also possible to

perturb a given mixing scenario when both hierarchical Dirac mass matrices and discrete

LR symmetry are present. In this case the zeroth order mass matrix as provided by mL

has to have a more complicated form.

5. Deviations from bimaximal and tri-bimaximal mixing

In the last section we have perturbed very simple mass matrices leading to Ue3 = 0 and

θ23 = π/4 via more or less anarchical perturbations from mI
ν . In particular, mD was

required to possess a rather unusual structure. We show in this section an alternative

possibility to deviate (in the normal hierarchy) within the type II see-saw mechanism

certain neutrino mixing scenarios, such as bimaximal [32] or tri-bimaximal [31] mixing.

The difference with respect to the proposals in section 4 is that the zeroth order mass

matrix, as provided by mL has a more complicated structure. One can again imagine that

these simple scenarios are implemented by some symmetry only in mL, whereas the other

mass matrices are connected to the “hierarchical with small mixing” form known from the

quarks. In contrast to section 4, the perturbation generated by the conventional see-saw

term works with a discrete LR symmetry and also with a hierarchical Dirac mass matrix [9].

Both the bimaximal and tri-bimaximal scenario predict vanishing θ13 and cos 2θ23, therefore

they are special cases of µ–τ symmetry [25, 28, 16]. In general, the procedure described

here will be possible for any µ–τ symmetric mixing scenario, but for definiteness we stick to

bimaximal and tri-bimaximal mixing. The latter is in perfect agreement with current data

and a perturbation due to type II see-saw (or some other mechanism) is strictly speaking

not necessary, but will lead to non-vanishing θ13 and cos 2θ23. In contrast to this, bimaximal

mixing is ruled out by several standard deviations, and therefore requires a perturbation.

As we will show, this perturbation can mimic Quark-Lepton Complementarity.

Let us start with bimaximal mixing [32], defined as

Ubimax =













1√
2

1√
2

0

−1
2

1
2

− 1√
2

−1
2

1
2

1√
2













, (5.1)
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corresponding to θ12 = θ23 = π/4, Ue3 = 0 and leading to a mass matrix

mbimax
ν =











A B B

· 1
2

(A + D) 1
2

(A − D)

· · 1
2

(A + D)











, (5.2)

where

A =
m0

1 + m0
2

2
, B =

m0
2 − m0

1

2
√

2
, D = m0

3 . (5.3)

The superscript 0 indicates that these are the initial mass eigenvalues, valid before a per-

turbation from the type II see-saw term is switched on. We demonstrate now how the type

II see-saw mechanism can lead to a deviation from bimaximal mixing in accordance with

neutrino data. We can assume again discrete LR symmetry, eq. (2.7), where vL f is now

given by eq. (5.2). The inverse of MR is given by

M−1
R = vL

vR
m−1

L = vL
vR













Ã B̃ B̃

· 1
2
(Ã + D̃) 1

2
(Ã − D̃)

· · 1
2
(Ã + D̃)













, (5.4)

where

Ã =
A

A2 − 2B2
, B̃ =

−B

A2 − 2B2
, D̃ =

1

D
. (5.5)

We shall assume in the following a normal hierarchical mass spectrum, i.e., (m0
3)

2 ≫
(m0

1,2)
2. For zero m0

1 the mass matrix eq. (5.2) would be singular. Assuming that mD is

hierarchical can be quantified as mD ≃ diag(0, 0,m). It is then easy to show that the effect

of the conventional see-saw term is only [5, 9]:

mT
D M−1

R mD ≃









0 0 0

· 0 0

· 0 s









, where s ≡ v2
L

m2

4γ v2

(

1

m0
1

+
1

m0
2

+
2

m0
3

)

. (5.6)

This term has to be subtracted from mL which is given in eq. (5.2). The zero entries

in this matrix can also be small and suppressed with respect to the 33 element without

changing our conclusions. With γ ≃ 1, m ≃ v and one of the m0
i of order vL, this

conventional term is of similar magnitude as the triplet contribution, which is proportional

to vL. Hence, identifying mD with the charged leptons or the down-quarks will lead to a

negligible correction of mI
ν to mII

ν if γ = O(1). If however mD is related to the up-quarks,

m ≃ v, then we can estimate this term as

s ≃ 0.1

4 γ

( vL

10−2 eV

)2
(

10−3 eV

m0
1

)

eV , (5.7)

where again hierarchical m0
i were assumed. Leaving LR symmetry aside, many non-singular

mass matrices MR in connection with hierarchical Dirac mass matrices will have the 33
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entry of mI
ν as the leading term and can be cast in the form (5.6). Naturally, for reference

values m0
1 = 10−3 eV and vL = 10−2 eV, the order of s can be — without varying γ around

the value one within more than one order of magnitude — given by the scale of neutrino

masses
√

∆m2
⊙ or

√

∆m2
A.

We can now diagonalize the perturbed mass matrix. For s of order D or smaller and

for D2 ≫ A2, B2 the mixing angles are given by

|Ue3| ≃
B s√
2 D2

, sin2 θ23 ≃ 1

2

(

1 +
s

D

)

, tan 2θ12 ≃ 4
√

2
B

s
. (5.8)

From the expression for θ12 and assuming hierarchical m0
i , one obtains that |s| ∼ |m0

2| ∼
√

∆m2
⊙ in order to reproduce the observations. One interesting aspect, which we will

assume now, is the following: from eqs. (5.2) and (5.3) it is obvious that for m0
1 = −m0

2,

or A = 0, one would start with vanishing ∆m2
⊙. In this case the conventional see-saw

term s creates not only the required deviation from maximal solar neutrino mixing, but

induces also the solar mass squared difference, which is then proportional to s2. The

phenomenological relation that the deviation from maximal solar neutrino mixing is of

the same order as
√

∆m2
⊙/∆m2

A can thereby be explained, since the same parameter is

responsible for both deviations.

We can discuss also a possible connection to Quark-Lepton Complementarity

(QLC) [33]. The deviation from maximal solar neutrino mixing can empirically be writ-

ten as [34] Ue2 =
√

1/2 (1 − λ), where λ ≃ 0.22 quantifies the required deviation. If

not a coincidence, the parameter λ is the sine of the Cabibbo angle θC and therefore [33]

θ12 + θC = π/4. In this case tan 2θ12 = 1/(2λ) + O(λ), and from comparing eq. (5.8) with

this expression it follows that QLC is mimicked5 when s/B ≃ 8
√

2 λ. In order to distinguish

the type I contribution to bimaximal mixing from QLC, we note that there are two main

scenarios in which QLC can arise [33] (a recent detailed analysis of the low and high energy

phenomenology of these two scenarios has been conducted in [35]). Their most important

and most easily testable difference is that one scenario predicts |Ue3|2 = λ2/2 ≃ 0.03, while

the other one predicts |Ue3| = Aλ2/
√

2 ≃ 0.03, where A is a parameter in the Wolfenstein

parametrization of the CKM matrix. In our framework, one finds that |Ue3| is of similar

size than in the second QLC scenario, but obeys the correlation

2 |Ue3|
tan 2θ12

≃
(

sin2 θ23 −
1

2

)2

≃ ∆m2
⊙

∆m2
A

cos 2θ12 . (5.9)

Since this relation is not predicted by the QLC scenario, we can in principle distinguish it

from our scenario.

Neutrino mixing can also be very well described by tri-bimaximal mixing [31], which

is defined by the mixing matrix in eq. (6.1). The resulting mass matrix mν = U∗ mdiag
ν U †

5Strictly speaking, every model predicting sin2 θ12 ≃ 0.28 mimics QLC, in the sense that this is about

the prediction of θ12 = π/4− θC . What we mean here by mimicking QLC is that one gets from bimaximal

mixing to sin2 θ12 ≃ 0.3.
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is

mν =









A B B

· 1
2
(A + B + D) 1

2
(A + B − D)

· · 1
2
(A + B + D)









, (5.10)

where

A =
1

3
(2m0

1 + m0
2) , B =

1

3
(m0

2 − m0
1) , D = m0

3 , (5.11)

or m0
1 = A−B and m0

2 = A+2B. For normal hierarchical neutrinos we have D2 ≫ A2, B2.

Note that if we remove B from the 23 block of mν we obtain eq. (5.2), i.e., bimaximal

mixing. Suppose again that the mass matrix (5.10) corresponds to mII
ν . In analogy to the

example for bimaximal mixing given above the conventional see-saw term will result in a

small contribution to the 33 entry. The results for Ue3 and θ23−π/4 are similar to the case

of initial bimaximal mixing discussed above, while for solar neutrino mixing it holds

tan 2θ12 ≃ 2
√

2

1 − s/(2B)
. (5.12)

A slightly smaller s is required in this case, which can be expected, since tri-bimaximal

mixing is very close to current data and little room for deviations is there.

6. More on tri-bimaximal mixing

We have seen in section 4 that a sum of two relatively simple matrices can lead to (close

to) tri-bimaximal mixing in the normal hierarchy. We will now comment more on the

realizations of this mixing scheme within the type II see-saw, discussing also the inverted

hierarchy and quasi-degenerate neutrinos. Tri-bimaximal mixing is defined as [31]

U =













√

2
3

√

1
3

0

−
√

1
6

√

1
3
−

√

1
2

−
√

1
6

√

1
3

√

1
2













. (6.1)

It corresponds to sin2 θ12 = 1/3, Ue3 = 0 and θ23 = π/4. The resulting mass matrix

mν = U∗ mdiag
ν U † can be written in terms of matrices multiplied with the masses:

mν =
m1

6







4 −2 −2

· 1 1

· · 1






+

m2

3







1 1 1

· 1 1

· · 1






+

m3

2







0 0 0

· 1 −1

· · 1






. (6.2)

This equation is exact, i.e., there are no order one coefficients involved. We remark here that

such a sum of three matrices could also be realized if there are three different contributions

to the effective mass matrix, such as the ones mentioned at the end of section 2.2. When

we assume a normal hierarchy and neglect m1 it follows

mν =

√

∆m2
⊙

3







1 1 1

· 1 1

· · 1






+

√

∆m2
A

2







0 0 0

· 1 −1

· · 1






, (6.3)
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i.e., the second term dominates. One of the terms could stem from the triplet term and

the other one from the conventional see-saw term. In section 4 we encountered this matrix

when we perturbed a triplet term corresponding to the atmospheric neutrino mass scale

(matrix (A) in eq. (4.1)) with a flavor democratic type I term. Another possibility is

that the triplet term is subleading and corresponds to the flavor democratic contribution

proportional to
√

∆m2
⊙. The second, leading term is then generated by the conventional

see-saw mechanism, for instance via sequential dominance or conservation of Le. Note

however that a democratic mass matrix has rank 1 and can not be inverted. Hence, if

there is a discrete LR symmetry then the term proportional to the democratic matrix can

not stem from the triplet but must come from the conventional see-saw term. Further

note that since the non-vanishing entries of the second term are identical, there will be

additional symmetries, such as S2 or Z2, required. For instance, if the democratic term is

generated by a triplet term, then the second term could stem from MR ∝ diag(0, 0, 1) and

for mD it suffices that the third row looks like (0,−1, 1).

Another possibility is that there are similar contributions of the type I and triplet

term. We can then discuss the inverted hierarchy and quasi-degenerate neutrinos. With

m3 = 0 and equal CP parities of the remaining states, i.e., m1 = m2, we can write

mν
√

∆m2
A

≃ 1

2







1 0 0

· 1 0

· · 1






+

1

2







1 0 0

· 0 1

· · 0






. (6.4)

Note that mI
ν and mII

ν have to have almost the same size. Strictly speaking, θ12 = 0 results

from this matrix. The underlying reason is the simplifying assumption m1 = m2, for which

small corrections (of order ∆m2
⊙/m2

1) are neglected. However, the quasi-degeneracy of the

two neutrino masses can easily lead to large solar neutrino mixing once small breaking

parameters are introduced. Breaking is necessary anyway in order to generate the solar

mass splitting. Eq. (6.4) is a sum of a unit matrix and a matrix conserving Lµ − Lτ (plus

an additional symmetry making the 11 and 23 entries identical). The first matrix could

be a triplet term, generated with SO(3), and the second term could stem from a type I

see-saw with a diagonal mD and a MR of the form

MR = M







1 0 0

· 0 1

· · 0






.

We encountered this kind of contribution from mI
ν already at the end of section 4, see the

remarks after eq. (4.9). It could also be that there is a discrete LR symmetry, in which mL

and MR are proportional to the unit matrix. A very unusual form of mD is then required

in order to obtain the second term in eq. (6.4). We could also generate this scenario when

both mD and MR are proportional to the unit matrix and the triplet term obeys Lµ −Lτ .

For an inverted hierarchy with opposite CP parities, we have

mν
√

∆m2
A

≃ −2

3







0 1 1

· 0 0

· · 0






+

1

3







1 0 0

· −1
2
−1

2

· · −1
2






, (6.5)
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where both terms correspond to Le − Lµ − Lτ . This matrix corresponds to tri-bimaximal

mixing and requires small breaking in order to generate the solar mass splitting.

Similar discussions are possible for quasi-degenerate neutrinos. If m1 = m3 = −m2,

then we can write

mν

m1
≃ 1

3







1 0 0

· 1 0

· · 1






− 2

3







0 1 1

· 0 1

· · 0






or

mν

m1
≃ 1

3







1 1 1

· 1 1

· · 1






−







0 1 1

· 0 1

· · 0






. (6.6)

We can therefore express the mass matrix as a sum of a triangular matrix and a unit (or a

democratic) matrix. For CP parities leading to m1 = −m3 = −m2 we can decompose the

mass matrix as

mν

m1
≃ −2

3







1 1 1

· 1 1

· · 1






+







1 0 0

· 0 1

· · 0






, (6.7)

where flavor democracy and Lµ − Lτ seem to play a role again. Discrete LR symmetry is

again possible. The last two cases do not produce tri-bimaximal mixing, but can easily do

so for appropriate small breaking parameters of order ∆m2
⊙/m1 and ∆m2

A/m1.

7. Summary

Both the type I and the type II see-saw mechanism explain tiny neutrino masses, but

large neutrino mixing is not predicted per se, unless there is additional input. While

generating large neutrino mixing is well and often studied within the conventional (type I)

see-saw mechanism, large or maximal mixing within the type II see-saw received so far little

attention. Therefore we discussed in this article the interplay of both terms of the type II

see-saw in order to understand the unexpected features of neutrino mixing. The fact that

the neutrino mass matrix is in this case a sum of two terms opens up the possibility of

cancellation if the two terms are comparable. It is also possible that the sum of two terms

generates the unexpected features of neutrino mixing. Alternatively and most natural, one

term can be the leading contribution, while the other one can give perturbations. In this

context, several possibilities were suggested in this article:

• we introduced “type II enhancement”, i.e., showed that within type II see-saw models

mild cancellation of certain terms can lead to the generation of large mixing angles,

even though all individual matrices involved predict small mixing. Both discrete

and gauge LR symmetry are possible. A hint to obtain such models is to note that

the complete 6 × 6 neutrino mass matrix can have a vanishing determinant. The

requirement that there is similar, but small, mixing in both mD and MR differs

from the usual (type I) see-saw enhancement of neutrino mixing, which requires a

stronger hierarchy in the heavy neutrino sector and somewhat decouples the two

sectors. Maximal or vanishing mixing requires additional input, such as the equality

of certain mass matrix elements;
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• the leading structure of the neutrino mass matrix as displayed in eq. (4.1) can be

generated by some symmetry acting on mL. Necessary corrections stem from the

conventional see-saw term. However, in case of a normal and inverted hierarchy

the leading structures given in eq. (4.1) (corresponding to Le and Le − Lµ − Lτ ,

respectively) are singular, which make these scenarios incompatible with the discrete

LR symmetric relation mL ∝ MR. In contrast to this, the leading structure for

quasi-degenerate neutrinos can be generated by the unit matrix or via the matrix

in eq. (2.3), corresponding to Lµ − Lτ . They can be inverted and are compatible

with discrete LR symmetry. We showed that anarchical perturbations can generate

successful phenomenology from the zeroth order matrices and that a µ–τ symmetric

perturbation keeps the initial values of zero Ue3 and maximal θ23;

• one could imagine that the triplet term has a more complicated structure corre-

sponding to bimaximal or tri-bimaximal mixing. In discrete and gauge LR sym-

metric scenarios with hierarchical Dirac mass matrices it is easily possible that

a small perturbation to mL arises, which deviates the mixing scenarios. Quark-

Lepton Complementarity could be mimicked, and in addition the empirical relation

1−
√

2 sin θ12 ≃
√

∆m2
⊙/∆m2

A can be explained if mL alone would generate vanishing

∆m2
⊙;

• we realized that for tri-bimaximal mixing the light neutrino mass matrix can often

be written as a sum of two terms both of which have an interesting structure. We

interpret this by assuming that each term stems from one of the two terms in the

type II see-saw formula. For a normal hierarchy, the two contributions have different

order of magnitude, their ratio is given by
√

∆m2
⊙/∆m2

A. For the inverted hierarchy

and for quasi-degenerate neutrinos, they have to have similar size.

The next generation of experiments will show if θ13 is small or tiny and if θ23 is large or

close to maximal. The discussed (incomplete) list of scenarios shows how the interference of

the two terms in the type II see-saw leads to various interesting possibilities to understand

all possibilities.
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